
An O(log n) Approximation Ratio for the
Asymmetric Traveling SalesmanPathProblem

Chandra Chekuri∗ Martin Ṕal†

February 16, 2006

Abstract

Given an arc-weighted directed graphG = (V,A, `) and a pair of verticess, t, we seek to find ans-t
walkof minimum length that visits all the vertices inV . If ` satisfies theasymmetrictriangle inequality,
the problem is equivalent to that of finding ans-t path of minimum length that visits all the vertices.
We refer to this problem as ATSPP. Whens = t this is the well known asymmetric traveling salesman
tour problem (ATSP). Although anO(log n) approximation ratio has long been known for ATSP, the best
known ratio for ATSPP isO(

√
n). In this paper we present a polynomial time algorithm for ATSPP that

has approximation ratio ofO(log n). The algorithm generalizes to the problem of finding a minimum
length path or cycle that is required to visit a subset of verticesv1, v2, . . . , vk in a given order.

1 Introduction

In the classical traveling salesman problem (TSP) we are given an undirected (directed) graph with edge
(arc) lengths and we seek to find a Hamiltonian cycle of minimum length. It is one of the most extensively
studied combinatorial optimization problems. TSP is not only NP-hard, it is also NP-hard to approximate to
within any polynomial factor - both these facts follow easily from the NP-Completeness of the Hamiltonian
cycle problem. If one relaxes the constraint and asks for a tour instead of a cycle, that is a vertex can be
visited multiple times, we obtain more tractable variants of the problem. In the undirected graph setting this
is equivalent to assuming that the edge lengths satisfy the triangle inequality and in directed graphs this is
equivalent to the arc lengths satisfying the asymmetric triangle inequality. These problems are referred to
as Metric-TSP and ATSP respectively. For Metric-TSP the best known approximation is a factor of3/2 due
to Christofides [6] and for ATSP the best known ratio isO(log n) first established by Frieze, Galbiati and
Maffioli [8]. The smallest known approximation ratio is0.842 log2 n [12] improving upon thelog2 n in [8]
and0.999 log2 n in [3].

In this paper we are concerned with the traveling salesmanpathproblem. The input to the problem is
a graph with edge/arc lengths and two verticess andt. We seek a path froms to t of minimum length that
visits all the vertices. As with TSP the path version is NP-hard and also hard to approximate via a reduction
∗Lucent Bell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974.chekuri@reserch.bell-labs.com
†Google Inc., 1440 Broadway, New York, NY 10018.mpal@google.com

1

from the Hamiltonian path problem. We therefore consider the relaxed version where we ask for a walk
instead of a path. We refer to undirected and directed versions as Metric-TSPP and ATSPP respectively.
For Metric-TSPP the best known approximation ratio is5/3 due to Hoogeveen [11] (see [10] for a different
proof). The ATSPP problem does not seem to have been considered much in the literature and we are only
aware of the recent work of Lam and Newman [14] who give anO(

√
n) approximation. Our main result is

the following.

Theorem 1.1 There is anO(log n) approximation algorithm for theATSPPproblem.

We also consider a generalization of ATSPP. We are given a sequence of distinct nodesv1, v2, . . . , vk
and seek a minimum length pathP (or cycle) that visits all nodes of the graph but visitsv1, v2, . . . , vk in that
order. We can assume without loss of generality that the pathP starts atv1 and ends atvk. In the undirected
setting, this problem has been referred to as path-constrained TSP and is a special case of a more general
problem called precedence-constrained TSP [4]. Recently Bachrachet al. [2] gave a3-approximation for
the path-constrained TSP in metric spaces. Here we show that our approach for ATSPP generalizes to the
asymmetric version of the path-constrained TSP.

Theorem 1.2 There is anO(log n) approximation algorithm for the path-constrainedATSPPproblem.

ATSPP vs ATSP: An α approximation algorithm for ATSPP yields the same approximation ratio for
ATSP by picking an arbitrary vertex to be both the start and end vertex of the path. On the other hand
an approximation algorithm for ATSP does not imply an algorithm for ATSPP. This is in contrast to the
metric case; Metric-TSP and Metric-TSPP are approximable to within constant factors of each other. At
first glance it appears that ATSPP can be reduced to ATSP by adding an arc(t, s) of appropriate length.
However it is not to hard to convince oneself that such a reduction does not work. To better understand the
difficulty in the directed setting and develop the main ingredient of our algorithm we give a brief overview
of the algorithm of Friezeet al. [8] for ATSP and a variant proposed by Kleinberg and Williamson [13] (see
[16] for a description and proof). Both algorithms work in an iterative fashion.

The algorithm in [8] finds a collection of directed cycles that partition the vertex set (called a cycle-cover
in some settings) such that the total cost of the cycles is at most OPT. This can be done in polynomial time
using a reduction to assignment problem. A vertex is chosen from each cycle to be its proxy and the problem
is reduced to the graph induced on the proxy vertices. Note that the number of proxies is no more than half
the number of initial vertices. A tour in the smaller graph can be extended to the full graph using the initial
cycles. Further, it can be easily seen that there must be a tour of length OPT in the new instance as well.
Thus the algorithm pays a cost of OPT in each iteration and since the number of vertices is reduced by a
factor of2 in each iteration the overall cost paid is bounded bylog2 n · OPT.

The algorithm in [13] works differently. It finds a single cycle in each iteration where the ratio of the
cost of the cycle to the number of vertices in the cycle is minimum. Such a cycle can be found in polynomial
time. Again a proxy vertex is chosen from the cycle and the algorithm works in a reduced graph with the
other vertices of the cycle removed. The analysis is similar to that for the greedy algorithm for covering
problems, in particular the set cover problem [7]. This results in an approximation ratio of2Hn whereHn

is then-th harmonic number.

2

Both the algorithms described rely on the fact that given a collection of cycles we can reduce the problem
by choosing a representative from each cycle and ignoring the other vertices in the cycles. While cycles are
useful in the ATSPP setting as well, they can no longer be relied on as sole building blocks. In addition to
cycles, we also need to maintain a partial path froms to t. This restricts our choice of improvement steps:
the only way to augment a partial pathP that suggests itself is to replace one of the arcs(u, v) onP by a
subpathP ′ from u to v that visits some yet unvisited vertices. Our main technical contribution is to show
that given any partial path, thereexistsan augmentation to a feasible path such that the cost of augmenting
is at most2OPT. Here OPT denotes the length of an optimum solution. We combine this with the greedy
approach similar to that in [13] to obtain desired algorithm.

Related Work: TSP is a cornerstone problem for combinatorial optimization and there is a vast amount of
literature on many aspects including a large number of variants. The books [15, 9] provide extensive pointers
as well as details. Our work is related to understanding the approximability of TSP and its variants. In this
context one of the major open problems is to resolve whether ATSP has a constant factor approximation.
The natural LP relaxation for ATSP has only a lower bound of2 on its integrality gap [5]. Resolving the
integrality gap of this formulation is also an important open problem. The path-constrained TSP problem is
a special case of the precedence-constrained TSP problem [4]: we are given a partial order on the vertices
and the goal is to seek a minimum length cycle that visits vertices in an order that is consistent with the given
partial order. In [4] it is shown that this general problem is hard to approximate for even special classes of
metric spaces.

2 Preliminaries

Let G be an arc-weighted directed graph. For a pathP in G let V (P) andA(P) denote the vertices
and arcs ofP respectively. LetP(s, t) denote the set of alls ; t paths inG. A pathP ∈ P(s, t) is
non-trivial if it contains internal vertices, that is|V (P)| > 2. Let C(s, t) denote the set of cycles inG
that donot contain eithers or t. Let P be a non-trivial path inP(s, t). Then thedensityof P denoted
by d(P) is the ratio of the total arc length ofP to the number of internal vertices inP . In other words
d(P) =

∑
a∈A(P) `(a)/|V (P) − 2|. Similarly the density of a cycleC ∈ C(s, t) is defined to bed(C) =∑

a∈A(C) `(a)/|V (C)|.

Lemma 2.1 Given a directed graphG and two verticess, t, let λ∗ be the density of the minimum density
non-trivial path inP(s, t). There is a polynomial time algorithm that either finds a pathP ∈ P(s, t) such
thatd(P) = λ∗ or finds a cycleC ∈ C(s, t) such thatd(C) < λ∗.

Proof: Given a parameterλ > 0 we give a polynomial time algorithm that either finds a non-trivial pathP
with d(P) ≤ λ or a cycleC ∈ C(s, t) with d(P) < λ or reports that no path or cycle has a density at most
λ. This can be combined with binary search to obtain the desired algorithm.

We can assume without loss of generality that inG there are no arcs intos and no arcs out oft. This
ensures that there are no cycles that contains or t. Givenλ we create a graphGλ that differs fromG only

3

in the arc weights. The arc weights ofGλ are set as follows:

`′(s, u) = `(s, u)− λ/2 u ∈ V − {s, t}
`′(u, t) = `(u, t)− λ/2 u ∈ V − {s, t}
`′(u, v) = `(u, v)− λ u, v ∈ V − {s, t}

It is easy to verify that the density of a pathP ∈ P(s, t) or a cycleC ∈ C(s, t) is at mostλ iff its length in
Gλ is non-positive. Thus we can use Bellman-Ford algorithm to compute a shortest path inGλ betweens
andt. If we find a negative cycle we are done. Otherwise, if the shortest path length is non-positive then we
obtain a path of density at mostλ. If the shortest path is positive we report the non-existence of a path or
cycle of densityλ.

We remark that the above proof only guarantees a weakly-polynomial time algorithm due the binary
search forλ∗. However we remark that one could use aparametricshortest path algorithm to obtain a
strongly-polynomial time algorithm. Our focus is on the approximation ratio and hence we do not go into
the details of this well-understood area and refer the reader to [1, 17].

Given a directed pathP and two verticesu, v ∈ P we writeu �P v if u precedesv in P (we assume
thatu precedes itself). Ifu �P v andu 6= v we writeu ≺P v. If P is clear from the context we simply
write u � v or u ≺ v.

We call a pathP ∈ P(s, t) spanningif V (P) = V , otherwise it ispartial. LetP1 andP2 be two paths
in P(s, t). We say thatP2 dominatesP1 iff V (P1) ⊂ V (P2). We say thatP2 is anextensionof P1 if P2

dominatesP1 and the vertices inV (P1) are visited in the same sequence inP2 as they are inP1. It is clear
that if P2 extendsP1 then we can obtainP2 by replacing some arcs ofP1 by subpaths ofP2. Let `(P1, P2)
denote thecost of extensionwhich is defined to be

∑
a∈A(P2)\A(P1) `(a). Note that the cost of extension

does not include the length of arcs inP1.

3 Augmentation Lemma

Our main lemma is the following.

Lemma 3.1 Let G = (V,A, `) satisfy the asymmetric triangle inequality and letP1, P2 in P(s, t) such
that P2 dominatesP1. Then there is a pathP3 ∈ P(s, t) that dominatesP2, extendsP1, and satisfies
`(P1, P3) ≤ 2`(P2).

We remark that the above lemma only guarantees the existence ofP3 but not a polynomial time algorithm
to find it. Let us introduce some syntactic sugar before plunging into the proof. For a pathP and two vertices
u �P v onP , we useP (u, v) to denote the subpath ofP starting atu and ending atv. Specifically for the
pathP1, we use the following notation: for a vertexu ∈ P1 \ {t}, we denote byu+ the successor ofu on
P1.

Proof of Lemma 3.1: Consider the setX ⊆ P1 of verticesu with the property thatu ≺P2 u
+. For each

such vertex, we think of replacing the arc(u, u+) of P1 by the subpathP2(u, u+). Näıvely, we could replace
all arcs(u, u+) by the corresponding subpaths ofP2. Unfortunately this might cause some arcs ofP2 to be
used multiple times and thus incur high cost. To avoid paying this cost, we choose only some of the vertices

4

inX to replace their corresponding arcs. We shallmarka subset of verticesu ∈ X with their corresponding
path segmentsP2(u, u+) such that each vertex ofP2 occurs in some marked path segment at least once,
while each arc ofP2 appears in at mosttwomarked segments.

We construct a sequenceg1, g2, . . . of marked vertices iteratively. To start, we letg1 = s be the first
marked vertex. Giveng1, . . . , gi, we constructgi+1 as follows. Find the last vertexv on the subpath
P1(g+

i , t) such thatv ∈ P2(s, g+
i). Such a vertexv always exists, asg+

i belongs to both path segments.
Note thatv+ /∈ P2(s, g+

i), which means that (unlessv = t) v ≺P2 v
+ and thusv ∈ X. If v 6= t, we let

gi+1 = v and continue to the next iteration. Ifv = t, we stop. Letgl be the last vertex of the constructed
sequence. To prove the lemma, it now suffices to prove the following two statements.

(P1) For every vertexv ∈ P2, there is at least one marked segmentP2(gi, g+
i) that containsv.

(P2) Every arca ∈ P2 belongs to at most two marked segmentsP2(gi, g+
i), with i = 1, . . . , l.

These statements in turn follow from the following inequalities:

(I1) For i = 1, . . . , l − 1, we havegi ≺P1 gi+1.

(I2) For i = 1, . . . , l − 1, we havegi ≺P2 gi+1 �P2 g
+
i .

(I3) For i = 1, . . . , l − 2, we haveg+
i �P2 gi+2.

In particular, (I2) shows that any two consecutive path segmentsP2(gi, g+
i) andP2(gi+1, g

+
i+1) overlap.

Since the first segment containss and the last segment containst, the union of these segments must neces-
sarily cover the whole pathP2. Hence (P1) holds. Inequalities (I2) and (I3) imply that two path segments
P2(gi, g+

i) andP2(gj , g+
j) overlap only if|i − j| ≤ 1, and thus each arca ∈ P2 can belong to at most two

consecutive segments. This proves (P2).

We finish the proof by showing that (I1)–(I3) hold. (I1) holds by construction, asgi+1 ∈ P1(g+
i , t). The

second part of (I2),gi+1 �P2 g
+
i is easily seen to hold as well, sincegi+1 is defined to be the last vertexv

along the pathP1 such thatv �P2 g
+
i .

From (I1) we know thatgi+2 occurs on the pathP1 later thangi+1, thus it must be thatgi+2 �P2 g
+
i

does not hold, and henceg+
i ≺P2 gi+2. This proves inequality (I3).

Finally, we prove the first part of inequality (I2),gi ≺P2 gi+1. Sinceg1 = s, this certainly holds for
i = 1. For contradiction, suppose thatgi+1 �P2 gi for somei > 1. Consider the iteration in whichgi got
marked. Recall that by construction,gi is the last vertex along the pathP1 that belongs toP2(s, g+

i−1). But
then, fromgi+1 �P2 gi andgi �P2 g

+
i−1 it follows thatgi+1 �P2 g

+
i−1, and hencegi+1 ∈ P2(s, gi−1). This

is a contradiction, because by (I1),gi+1 occurs onP1 later thangi.

We obtain the following useful corollary.

Corollary 3.2 Let P ∈ P(s, t). Then there is a spanning pathP ′ ∈ P(s, t) suchP ′ extendsP and
`(P, P ′) ≤ 2OPT.

Proof: In Lemma 3.1, we letP1 = P and we chooseP2 to be some fixed optimum spanning path. The path
P3 guaranteed by the lemma is the desiredP ′.

5

4 Algorithm for ATSPP

Our algorithm for ATSPP works in a greedy fashion, choosing a best ratio augmentation in every step
similar in spirit to that in [13]. The approximation ratio follows from the same arguments as in the analysis
of the greedy algorithm for set cover [7].

At any point in time, the algorithm maintains ans-t pathP = (s = p0, p1, . . . , pk = t) and a listC
of disjoint cyclesC1, . . . , Cl. The cycles are at all times disjoint fromP and together withP partition the
vertex setV . From each cycleCi, we pick a vertexci as a proxy for that cycle. Initially, the pathP consists
of a single arcs-t, and every vertexv ∈ V \{s, t} is considered a separate (degenerate) cycle. (Thus initially,
each vertex will be its own cycle’s proxy.)

In each iteration, we seek to decrease the number of components by performing apath/cycle augmenta-
tion. In a path augmentation step, we pick a pathπ that starts at some vertexpi 6= t on the pathP , visits
one or more cycle proxy vertices, and ends atpi+1, the successor ofpi onP . LetR(π) = ci1 , ci2 , . . . , cim
be the set of proxy vertices visited byπ. Consider the union of the pathπ and the cycles{Ci}ci∈R(π). In
this graph, the in-degree of every vertex equals its out-degree, except forpi andpi+1. Thus, it is possible to
construct an Eulerian walk frompi to pi+1 that visits all arcs (and hence all vertices) of

⋃
ci∈R(π)Ci. Using

triangle inequality and short-cutting, we convert the walk into a pathπ′ that visits every vertex only once
without increasing its cost. We then extendP by replacing the arcpipi+1 by the pathπ′. Finally, we remove
all cycles inR(π) from C.

The cycle augmentation step is very similar. We pick a non-degenerate cycleC on proxy vertices (that is,
it contains two or more proxy vertices). We letR(C) be the set of proxy vertices visited byC, and consider
the graphC ∪

⋃
ci∈R(C)Ci. This graph is Eulerian: by following an Eulerian tour of it and short-cutting, we

obtain a cycleC ′ visiting every vertex of
⋃
ci∈R(C)Ci. We don’t know how to useC ′ to extend the pathP ;

instead, we addC ′ to the listC (we pick a proxy forC ′ arbitrarily). Again, we remove all cycles inR(C)
from the listC.

In every iteration, we pick a path or a cycle augmentation step with minimum density. In the following,
we useπ to refer to either an augmenting path or augmenting cycle. For the purposes of this algorithm, we
define the density of a path or cycleπ to bed(π) = `(π)/|R(π)| the ratio of the length ofπ to the number
of proxy vertices covered byπ. Note that although we consider only proxy vertices in the above definition
of density, we can still use Lemma 2.1 to find, in polynomial time, an augmenting path of minimum density
λ∗, or find an augmenting cycle with density no greater thanλ∗.

Each augmenting path or cycle iteration reduces the size of the listC, and hence it takes at most|V | − 2
iterations to exhaust it. At this point, all outstanding cycles must have been included inP , and henceP
must be a valid ATSPP path. We thus outputP and stop.

4.1 Bounding the cost

We now turn to bounding the cost of the resulting path. To do this, we observe the quantityL = `(P) +∑
c∈C `(C). Initially, L = `(s, t) ≤ OPT. Note that in every augmentation step,L increases by at most`(π),

whereπ is the current augmenting path or cycle. Hence, it is enough to bound the cost of the augmenting
paths/cycles.

6

Claim 4.1 In every iteration, ifπ is the augmenting path or cycle in that iteration,

`(π) ≤ |R(π)|
|C|

· 2OPT.

Proof: LetP ∗ be a minimum-costs-t path that visits all proxy vertices of cycles inC. One such path can be
obtained by short-cutting the optimum ATSPP path, hence`(P ∗) ≤ OPT. Lemma 3.1 states that the pathP
can be extended to a pathP3 such thatR(C) ⊆ P3 and the cost of the extension is at most2`(P ∗) ≤ 2OPT.
The extension covers|C| proxy vertices, and hence has density at most2OPT/|C|. The subpaths of this
extension are also valid augmentation paths; and one of them must have density no greater than the density
of the whole extension. Thus, there is an augmenting path with ratio2OPT/|C|; the density of the best path
or cycle can only be lower.

Lemma 4.1 The overall cost of the path output by the algorithm is at mostmax(4Hn−2, 1) · OPT.

Proof: At any given stage of the algorithm, letk = |C| be the number of components left. We claim that
(*) the cost of reducingk by one is at most4OPT/k. Summing overk = 1, . . . , |V | − 2 yields a bound of
4Hn−2OPT. We also have to account for the arc(s, t) purchased in the initialization phase; but note that if
n ≥ 3, this arc will be removed during the execution of the algorithm and hence does not contribute to the
final cost. It is easy to verify that forn = 2, our algorithm finds an optimal solution.

To prove the claim (*), consider any fixed value ofk and consider the augmentation step in which the
value of|C| drops from somek1 ≥ k to k2 < k. The augmentation step was either a path step, or a cycle
step. In a path step,k1 − k2 cycles are removed at cost2OPT(k1 − k2)/k1, i.e. 2OPT/k1 ≤ 2OPT/k per
cycle. In a cycle step,k1−k2 +1 cycles are removed and one cycle is added, at cost2OPT(k1−k2 +1)/k1.

The amortized cost per cycle is thus2OPT
k1
· k1−k2+1

k1−k2
. Since in a cycle step,k1− k2 ≥ 1, the amortized cost

per cycle is at most4OPT/k1.

We briefly discuss the running time of the algorithm. The number of augmenting iterations is, in the
worst case, linear inn. In each iteration we need to find a parametric shortest path between every adjacent
pair of vertices in the current partial path. Thus, in the worst case the algorithm requiresΘ(n2) parametric
shortest path computations. Each parametric shortest path computation can be implemented inO(nm +
n2 log n) time in a graph withn nodes andm arcs [17]. One way to simplify the implementation is to
use the transitive closure of the original graph: an arc(u, v) in the trantive closure has length equal to the
shortest path fromu to v in the original graph. A simple upper bound on the number of arcs in the closure is
n2. Thus a parametric shortest path computation takesO(n3) time. Putting together these bounds, we can
implement our algorithm inO(n5) time. The running time can be improved at the expense of a (slightly)
worse approximation guarantee. In particular the density computation for the augmentation in each iteration
can be approximate.

Path-constrained ATSPP: We show that our algorithm for ATSPP generalizes to the path-constrained
version. Recall that we are given a sequence of verticess = v1, v2, . . . , vk = t and seek a minimum length
spanning path inP(s, t) that visitsv1, v2, . . . , vk in order. The only change from the algorithm for ATSPP
is in the initialization step. Instead of starting with a path consisting of the arc(s, t) we start with a pathP
consisting of the arcs(v1, v2), (v2, v3), . . . , (vk−1, vk). Note that the cost of this path is a lower bound on

7

the cost of an optimum path. We can apply the augmentation lemma from now on and proceed as before.
The analysis is essentially the same as for ATSPP.

Acknowledgments: We thank Fumei Lam for an enlightening conversation, for sending us a copy of the
manuscript [14] and for pointing out [2]. We thank Moses Charikar for pointing out [13]. Part of this work
was done while the second author was at Lucent Bell Labs. Chandra Chekuri acknowledges support from
an ONR basic research grant N00014-05-1-0256 to Lucent Bell Labs.

References

[1] R. Ahuja, T. Magnanti and J. Orlin. Network Flows. Prentice Hall, 1993.

[2] A. Bachrach, K. Chen, C. Harrelson, S. Rao and A. Shah. Lower Bounds for Maximum Parsimony
with Gene Order Data.RECOMB Comparative Genomics, 1–10, 2005.

[3] M. Bl äser. A New Approximation Algorithm for the Asymmetric TSP with Triangle Inequality.Proc.
of ACM-SIAM SODA, 638–645, 2002.

[4] M. Charikar, R. Motwani, P. Raghavan and C. Silverstein. Constrained TSP and lower power comput-
ing. Proc. of WADS, 104–115, 1997.

[5] M. Charikar, M. Goemans, and H. Karloff. On the Integrality Ratio for Asymmetric TSP.Proc. of
IEEE FOCS, 101–107, 2004.

[6] N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem. Technical
report, GSIA, CMU, 1976.

[7] V. Chvatal. A greedy heuristic for the set-covering problem.Math. of Oper. Res., Vol 4:233–235, 1979.

[8] A. Frieze, G. Galbiati and M. Maffioli. On the worst-case performance of some algorithms for the
asymmetric traveling salesman problem.Networks12, 23–39, 1982.

[9] G. Gutin and A. P. Punnen (Eds.). Traveling Salesman Problem and Its Variations. Springer, Berlin,
2002.

[10] N. Guttmann-Beck, R. Hassin, S. Khuller and B. Raghavachari. Approximation Algorithms with
Bounded Performance Guarantees for the Clustered Traveling Salesman Problem.Algorithmica, Vol
28 pp. 422–437, 2000. Preliminary version inProc. of FSTTCS, 1998.

[11] J. Hoogeveen. Analysis of Christofides’ heuristic: Some paths are more difficult than cycles.Opera-
tions Research Letters, 10:291–295, 1991.

[12] H. Kaplan, M. Lewenstein, N. Shafir and M. Sviridenko. Approximation Algorithms for Asymmetric
TSP by Decomposing Directed Regular Multidigraphs.Proc. of IEEE FOCS, 56–67, 2003.

[13] J. Kleinberg and D. Williamson. Unpublished note, 1998.

[14] F. Lam and A. Newman. Traveling Salesman Path Problems. Manuscript, April 2005.

8

[15] E. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. Shmoys (Eds.). The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization. John Wiley & Sons Ltd., 1985.

[16] D. Williamson. Lecture Notes on Approximation Algorithms. IBM Research Report RC 21273,
February 1999.

[17] N. Young, R. Tarjan and J. Orlin. Faster parametric shortest path and minimum balance algorithms.
Networks, 21(2): 205–221, 1991.

9

